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PREFACE
b i
In this Memorandum the dependence of plane array gain upon
thinning, steering and element directivity is discussed and a
systematic way to avoid grating lobes in highly thinned arrays is
introduced. The ideas are illustrated by some detailed examples.
The Memorandum should interest people designing thinned, elec-

tronically steered, plane arrays for modern radars.



SIMMARY

Two related topics in the design of plane phased arrays are
discussed. One is the dependence of gaih upon thinning, steering
and element directivity; the other is a systematic procedure for
locating the elements of highly thinned, plane arrays.

A few general observations on the effects of thinning and
steering can be made from the expression for the gain of an array )
of elements having an arbitrary directivity factor. The speciali-
zations to isotropic elements and to infinitesimal dipoles are then
made and these observations are verified for some actual arrays.

A systematic way to rendomize element locations in a thinned
array while still epproximating same basic excitation taper is
also suggested and illustrated. The thinning scheme is based on an
equal area approximation to a continuous excitation distribution,
with the equal areas being laid out in the form of an expanding
spiral. This procedure insures against accidentel element align-
ment in any particular direction. Its effectiveness is shown by
applying it to a 100-element array and plotting several sections

of the resulting directivity pattemn.
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I. INTRODUCTION

Two related topicr in the design of plane phased arrsys are
discussed. One is the dependence of gain upon thinning, steering
and element directivity; the other is a systematic procedure for
locating the elements of highly thinned, plane arrays.

A few general observations on thé effects of thinning and
steering can be made from the expression for the gain of an arrsy of
elements having an arbitrary directivity factor. The specializations
to isotropic elements and to infinitesimal dipoles are then made and
these observations are verified for some actual arrays.

A systematic way to randomize element locations in a thinned
array while still approximating some basic excitation taper is also
suggested and illustrated. The thinning scheme is based on an equal
area epproximation to a continuous excitation distriﬁution, with the
equal areas being laid out in the form of an expanding spiral. This
procedure insures against accidental element alignment in any par-
ticular direction. 4

The dependence of gain on element spacing has been described by

Milazzo and D'Angelo(l)

for the case of a uniformly spaced, broadside
linear array. Bickmore(e) considers a square current sheet, linearly
polarized parallel to one side of the square. For steering around

the axis of polarization he derives the dependence of 3 db beamwidth
on steering and shows that the cosine approximation for effective
aperture holds to within a beamwidth or so of endfire. Von Aulock's(3)

expository article contains similar material on the beamwidths for



electronically steered rectangular arrays with uniform spacing.
Although results like those in Ref. (1) are easily demonstrated for
plane arrays also, the facts are apparently not universally appreci-
ated. One difficulty is the number of parameters whose effects are
to be disentangled and separately accounted for. In this Memorandum
the effects will be discussed in connection with the detailed example
which occupies about half the pages. Although some qualitative
statements can be made from the general expression for gain, the
actual fluctuations in gain as a thinned array is steered will depend
strongly on the array configuration itself. For instance, a square
array with uniform spacing of a wavelength or so would have very wide
gain fluctuations, while the example to be considered has relatively
mild gain fluctuations with steering.

The example also furnishes a convenient way to introduce a new
approach to the problem of spurious main lobe reduction in highly
thinned plane arrays. The approach of King, Packard and Thomas(h)
is essentially intelligent cut-and-try. Baklanov, Pokrovski, and
Surdu‘r.ov:lch(5 ) apply a Newton-Raphson iterative procedure to solve
for the locations of the N elements of a symmetrical linear array
whose first [N/2] side lobes have a pre-assigned level. Andreasen(s)
has also used an iterative procedure to deduce element distributions
for which the nearest grating lobes or other large lobes are held'
down to a level appropriate to the number of elements. All three
papers are concerned with linear arrays. For plane arrays or arbi-
trary volumetric distributions there have been some statistical

(7)

analyses of large random sets of radiators. Cover's Memorandum



is typical, though not directly concerned with spurious lobc re-

(8)

duction. Maher and Cheng consider the statistical effects of re-
moving a relatively small number of clements from a linear array.

The only reported explicit synthesis of a thinned, plane array seems
(9)

to be that of Willey. The method used in this Memorandum is very
close to Willey's, which is based on the idea of approximating a
continuous aperture distribution with a discietc array of equal
radietors by partitioning the continuous distribution into areas of
equal veight and assigning a radiator to each such area.(lo)
It differs from Villey's in providing a nearly automatic assign-
ment of element locations without thc need to make individual choices

by hand from a small numbcr of possibilities.



II. GAIN OF PLANE PHASED ARRAYS

Let N radiators be located at points, Pk, in the equatorial
plane, 0 = n/2, of a spherical coordinate system (see Fig. 1). The
locations will be specified in either rectangular coordinates,

(xk,yk), or polar coordinates, (rk,cpk), as convenient. Let the

D, (To onywhere)

Fig. 1 — Coordinates

!
i



emplitude end phase of the excitation of the k> element be 8, and

k
Consideration will be restricted to cases describable by a

b 80 that the complex excitation is glven by ¢, = & exp(ibk).

scalar or one-dimensional analysis. These include acoustic radiators
and linearly polarized electromagnetic radiators, where the far field
contains only a single component. In particular, parallel linearly
polarized currex;t elements or parallel dipoles are covered.

The distent field in an arbitrary direction is then proportional

to

1bk+2x1(rk/ A)sin © cos(cp-cpk)

N
v(e,9) = E(0,9) Y a e (1)

k=1
E(0,p) is the element directivity factor, assumed to be the same for
all elements. The phase reference has been taken to be the origin,
0, of the coordinate system and the factor (rk/k) sin © cos(cp-cak)
is simply the number of wavelengths in the projection of OPk onto
OD. A pencil beam with a maximum in the direction (eo,cpo) vill be
formed if the excitation phases, bk, are so chosén as to annihilate

each exponent in the direction (eo,po). This choice is
bk = -2n(rk/7\) sin @ cos(cpo - q;k) (2)

The gain in any direction, (0,0), is the ratio of intensity

at (06,0) to the average intensity over all directions:

2
¢(8,9) = Vi
+ IQ V(8,91 aw



where _fQ +e. Qw indicates integration over the sphere. Gain, G,
vithout qualification, will mean G( 8, ,tpo), the gain in the direction

of the beam maximum. This gain is given by

2, ¥ oo g X 2
1=(e,,0,)1% | 2 &, |°/G = [ |sin 8lae [ [v(e,0)|"ap/kx
= o -5

N-1 N 1(bk-bd) N o, (s
= Re T L 2a.8e I, + T 3
JLkeger X 3 " e
vhere
n n 2 sin )
——-X—J-‘ r, cos(tg-g, )-r, cos(w-0,)
Ty =] lsin ol [ e & ET ) ]|E(e,¢)|2dm
) -%

(¥)

depends only upon the element locations and the element directivity

factor. Notice that
n 7
) de 2
Ikk = .ro |51n 9|rﬂ '[n |E(9,¢)| dep (5)

is merely the average element factor.
When the element factor, E(9,¢), has the twofold symmetry
|E(8,0) |=|E(8,-0) |=|E(8,0+n)|, as is the case for the examples to

be considered, I, is real and Eq. (3) becomes

3k

2, ¥ 2
|E(6°,<.°°)| ‘ki:lek‘ N-1 N
= =2 b -b I
5 J;‘:l k=§+la'jak cos( " J) Jk

=2



SWAMPING OF ELEMENT DIRECTIVITY WHEN THERE IS NO THINNING

The gain of a phased array will change as the beam is steered
about. Various factors contribute to this change. In this section
evidence is given that the element factor has little effect on the
variation of gain with steering whenever the array is producing a
sharp beam and is not thinned. In Section IV these assertions are
verified by comparing the variations of gain with steering for two
arrays, one of isotropic elements and the other of infinitesimal
dipoles.

The quantity |V(8,)|° of Eq. (3) 1s the product of the squared

nagnitudes of the array factor

L 2 A
M) = ?: - ﬂi(rk/ )sin © cos(¢-@k)

k=1

and of the element factor, E(8,p¢). In terms of A and E, Eq. (3) may

be rewritten as

b n
15(8,,9,) A(8g,9,)1°/6 = [ [sia ol5e r |a(e,0)1|EC0,0) %9 (7)

Suppose the element directivity is a slowly varying and not very
peaked function of position. For example, if the elements are
parallel infinitesimal dipoles the element factor is |E(9,¢)|2 =
sinea, where & is the angle between the direction (©,p) and the axis
of a dipole. This pattern, in three dimensions, looks like a smooth,
holeless doughnut. When the pencil beam is very sharp and does not
come near a null of the slowly varying element factor and when most

of the valume inside the array factor is the volume directly under



the peak, then a close approximation to the integral in Eq. (7) is
obtained by setting E(8,9) = E(® O,Qo), its value at the peak of
A(9,9), whereupon E(eo,oo) cancels out of Eq. (7).

Even if the total sidelobe volume of A is not negligible there
is another effect that reduces the dependence of gain on the element
factor: the contribution to the integral from outside the peak of
A stays roughly constant as the beam is steered around. Denote this
contribution by Ei Ai(l - B), where Ei Ai is an average value outside
the peak of A and where B is the fraction of space occupied by the

peak of A. Then Eq. (7) may be written as

2 52
A
0o 2 2 2
= -EiAl(l-B)*BEvo
or

2 2

E

1.3+(1-3) JQ'A;
E° A
[o N o]

The variation of G is produced mainly by the variation of Eo' To

3 Ag < B the variation in the second term

2
the extent that Bi Al/E
will be dampened by the first term, B. The two terms will be about
equal when half the energy is radiated into the sidelobes, but even
in this case the constant B will roughly halve the variation of G

with Eo.

EFFECT OF THINNING ON GAIN VARTATION WITH STEERING

A closely spaced arrey approximates a continuously excited area.

For both these cases gain is proportional to cos 60 for angles, 90,



not too far from the perpendicular. For widely spaced arrays,
however, this cos eo factor will disappear. To see why this should
be so, consider the two parts of Eq. (6). Ikk is a constant and
hence the second term is independent of spacing or steering. In the
first term, when spacing is large the angles bk will contain many
cycles so that the oscillating factors, cos(bk -b J) , are egually
likely to be positive or negative. There will be some fluctuation,
but the average value of the first term will be zero. Thus for wide

spacing, gain is approximately

LORRIEG kg 8 )2

G = o
) S >
Kk o) 8%

This clearly does not vary as cos 60. Since Ikk’ from Eq. (5), is

the average of |E(e,¢)|2, it follows that

2
|E(°°:°°)|
I = Ge(oo’q’o)
kk

the gain of the element factor in the direction (eo,cpo). Thus for

wide spacing the gain

N 2
N
(kfl 'Y
= Ge(eo’°o) N 2
L oo

k=1

is simply a constant times the element gain in the direction of

steering.
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The argument of the preceding section said that element gain
should be swamped. This section seys gain follows the element factor.
However, there is no contradiction, since the case of extreme thinning
is precisely the case for which Ei Ai/Ei A§ is greater than B. All
these remarks are checked for the particular examples computed in
Section IV. In summary, when spacing is close, the element factor
is unimportant and gain veries with steering as cos ) 2 out to a
couple beamwidths away from the equatorial plane; when spacing is

great, the variation of gain with steering follows the element gain.

GAIN IF ELEMENT FACTOR IS UNIFORM OVER A HEMISPHERE

Let
11£ 050 < /2
E(0,9) =

0Oif n/f2< 0@ <x

Such a radiator will be referred to as "isotropic" for short, even
though its effect is confined to a half-space.

From Eq. (&)

7/2 a8 o zi?’-‘—ef rchS(cp-ok)-chOS(w-epJ)]
= r sin © Ix r e -
o) -

-
|

Jk

2rd sin @

n/2 a8 ——;—L d,jk cos(cp-vjk)
r sin 8 o~ r e

o T x

(8)

n/2
ro sin @ J°(2ﬂ(djk/)\) sin 6) d8/2



sin(2x d k/).)

ik = "Txa W (8)

(cont'd)
where
2 _ 2 2 = JOVERY" v )2
dJk =x + rJ - 2rJrk cos(qk-¢J) (xk xJ) + (yk yJ)
is the squared distance between the j-th and k-th elements.
When j = k
L~ 2 (9)
From Eq. (3) the gain is given by
N \e g
<k21°'x J N1 N , sin(em, /A) ;N "
oS » T a cosb-b)———-}r+—8 10
G sol kmol 1% K e 2,0 &
An important special case is 8 = co. =8y = 1l; then
N-1 N sin(2m _ /A)
N 1 1 k
N_1,1'% zcos(b-b)—ln—- (1)
G 2 N =1 kej+l k 21tdJk

Some examples for this case appear in Section IV. For wide spacings

the terms of the double sum go down because of the divisor 4 They

Jk’
also tend to cancel each other in a random way because of the large

and irregular values of (bk-bJ). Hence for wide spacings G a 2N.

The factor 2 results from choosing elements that radiate "isotropically"

into a hemisphere.



GAIN FOR DIPOLES RADIATING INTO A HEMISPHERE

The infinitesimal dipoles are taken to lie parallel to the x-
axis. The element factor is then (1 - cosacp sinae) in the northerm
hemisphere, 0 € 8 S n/2, and vanishes in the southern. For the calcu-

lation of I, see the Appendix. The result is

Jk

_sin z _l_(sinz_ )
ujk" : +22 =g -cosz

+cos?wfl‘?-<§llzll-cosz>--s-i—2—z] (12)
-z
where
z = 2 djk/)\ (13)
and
2 2
(x, - x,)° - (y, -v,)
cos 2w = ' Sl 2k Jd (1k)
a
When j = k
1
Lk =3 (15)

Gein for this case is given by Eq. (3), with IJk and I, given by
2 2

Egs. (12) through (15) and with |E(6°,cpo)l2 =1 - sin°@  cosg,.

For the special case of equal excitation, 8 =85 = co. =8y = %

the gain is given by
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2 2
1-5in"@_ cos“g F-1 R
0 o 1 2
==+%2 T £ I, cos(b . -b,) (16)
G/N 378 0 gegu % k™)

Some examples for this case also appear in Section IV, where
the behavior of gain with thinning and steering is compared with the
corresponding behavior for elements with uniforn radiation over a

hemisphere.
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III. DISCRETE APPROXIMATION OF APERTURE EXCITATIONS BY SPIRALS

Consider a plane array intended to produce a steerable pencil
beam. The beam shape and gain will depend on the distribution of
elements over the area of the aperture and on the aperture size. The
beamwidths will depend mainly on the aperture diameters, while the
relative distribution of elements will determine the sidelobe levels
and will also determine whether spurious main lobes arise. The
general behavior of near sidelobes can be controlled by Jma.king the
element distribution approximate a continuous excitation having a
known, and acceptable, set of sidelobes. For example, a suitable
continuous excitation can be divided into areas of equal total ex-
citation and an element of a discrete array assigned to each such
area.

The actual partitioning of the illumination into equal incre-
ments can be done in many ways. For example, a square aperture can
be divided into & regular array of rectangles and an element assigned
to each rectangle, if a uniform excitation is to be approximated.
When such a regular array is used, spurious lobes arise as s0on as
the spacing exceeds one wavelength. By randomizing the spacings,
such lobes can be decreased. The general objective is so to space
the elements that the distribution of their projections on any line
is always irregular. This immediately suggests basing the distri-
bution on & set of uniform distributions on circles, since circles
already ére free from preferred directions. If an annular region is
to be occupied by a fixed number of elements, it would presumably be

divided evenly and an element assigned to each equal part, pe.haps



= 15

being randomly displaced inside its assigned area. The rings could
be rotated with respect to one another so that no strongly lined-up
elements formed spokes.

From the above discussion it is only a short Jjump to the ideea of
dividing the continuous excitation into equal pieces by winding out
from the cen*er in a spiral strip. The spiral strip will then be
divided into roughly square pieces, each to be represented by one
element of the final array. If the array is to epproximate a con-
stant excitation, then the spiral strip will soon reach a nearly
constant width. If the illumination is to be tapered, then the strip
should gradually widen as the spiral expands. Similarly, the spacing
of elements along the strip would be even if a constant illumination
is to be approximated, but would gradually increase if there is to
be a tapering at the edge.

There is no guarantee that such a spiral plan for positioning
the elements will not produce spokes, or even nearly parallel lines
of elements. However, it seems probable that such accidents would

be rare.

DISC WITH CONSTANT EXCITATION

Consider the problem of placing a given number of elements
inside a circle so that the spacing between elements is roughly
uniform but so that the elements do not tend to fall on straight
lines. Suppose the elements are evenly spaced along the arc of an
expanding spiral. After the spiral has grown a bit, the distance

between successive elements on the spiral (chord or secant) will
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soon be very nearly the same as the distance along the arc, hence
choosing equal spacing along the arc guarantees roughly uniform spacing
of elements in the 0 direction. The direction of the discrepancy will
be such as to produce a slight tapering down as the outside of the
array is approached, which i5s a discrepancy in the right, or helpful,
direction (since it means slightly lower sidelobes). To determine

the spiral approximately, consider the relation between arc length,

s, and radius, r. Let d be the constant distance between elements
along the arc of the spiral; then the number of elements in length

ds vill be ds/d. Suppose the radius grows by dr during the space ds.
If a constant illumination is to Dbe approximated, then the number of
elements in an annulus of width dr should be proportional to the area,

2qrdr, of the ring. Hence the spiral is given by
ds = r dr/ro (17)
vhere T is a proportionality constant. Integrating Eq. (17) results

in

2 2
r = ro + 2!'08 (18)

From Eq. (18) and dss r2 ae® + dr° it follows that

/2ros ds

de = —5——

2
r +2r s
o o

or (19)
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Equations (18) and (19) are parametric equations of the spiral.
Spacing elements equally along the arc means that the k-th element
corresponds to parameter s, = (k-1), forx =1, 2, ..., N, with
the polar coordinates of the k-th element given by Eqs. (18) and
(19). Let the outermost, or N-th, element lie at distance a from
the center; thus a may be considered the radius of the roughly

circular erray. Then
2 2
& =1+ 2r°(N -1)d (20)

A choice for the starting radius, Tos has still to be made. The
area represented by an individual element will be roughly square if
the distance between successive turns of the spiral is equal to the
distance, d, between elements along the spiral. This will make the
radial and tangential components of the interelement distances about
the same. An approximate solution for this requirement is possible
if the spiral has several tums. Near the outside the tem
ta.n-! 2s/r° is approximately x/2 and can be ignored. From Egs. (18)
and (19), for two values of the parameter, t and s, corresponding

to a change of 2x in @

2 2 2 c

T =Ty o (r - q) 'ro‘es
2 =T 2 T
r o rg o

and

SB[,
rO rO
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hence
et | ggmf_-r_:_d_ )
r T T T =<
o o o o
and 1
dm2ﬂr° (21)

The elements are located where s, = (k - 1)d. Take the N-th

element at the outer radius, a; then

a2=r2+2r(N-l)2xr
o ) o

or

a

Ir =
°© Af1+ bx(N - 1)

(22)

EXAMPLE--100 ELEMENTS OVER A DISC

If the outer radius is a = 14.1, then r_ = 1k.1/ ./ 1+kx (100-1)

~ .400 and @ = 2 r_ = 2.51. From Eqs. (18) and (19) there result

T =\ﬁ.oooxc - 1.848 (23)

and

8, =/12.57(k - 1) - tan" /12.57(k - 1) (24)

The 100 locations for this example are plotted in Fig. 2. They
look uniformly distributed and not lined up in any particular

direction.
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Fig. 2 — Spiral distribution approximating uniform excitation



It remains to discover the extent to which this arrangement is
"random" and has succeeded in avoiding big sidelobes when the average
interelement spacing ‘s made noticeably greater than half a wavelength.
The pattern produced by 100 elements arranged as in Egs. (23) and
(24) 1s described in Section IV, along with the other numerical re-

sults for this example.



IV. A DETAILED ILLUSTRATION

To verify the conclusions of Section II an example is worked out
in detail. The variation of gain with steering and spreading (or
thinning) is found for the spiral array of Fig. 2, using both isotropic
elements and infinitesimal dipoles.* For no spreading, the gain
varies with steering according to the well-known cos 00 approximation,
while for great spreading the variation of array gain with steering

follows the gain of the element factor.

THE THINNING PARAMETER, S

Up to now, thinning or spreading has been discussed in a rough
quantitative way only. Before any calculation can be done, the notion
of thinning needs to be made exact. For a regular array whose elements
lie at the intersections in a square grid, the spacing parameter would
naturally be defined to be the mesh dimension in, perhaps, half wave-
lengths. For the sort of irregular array presented by the spiral in
this example, no such direct and simple definition is possible.

Any definition of the spacing parameter, S, will always be
somewhat arbitrary. The one to be given here has two merits: it is
fairly natural, and it reduces to the "right" number for regular,

rectangular arrays. Let A be the area of an array which is occupied

*Beca.use there was assumed to be no radiation into the southern
hemisphere, the results may be 3 db higher than might be expected.
No special virtue inheres in infinitesimal dipoles; they just happen
to be a convenient example for which to verify the assertions made
about the effect of the element factor on the variation of gain with
thinning and steering.
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by N elements. Then the spacing (or thinning, or spreud.ins)
parameter, S, is defined as

A

The units are square halfwaves per element. A regular array of N
elements, spaced K halfwaves, has S ~K2, ;rith x2 = § = 1 the normal
or unthinned case. For en array which has been literally thinned
(by removing elements more Or less uniformly, while leaving the same
area occupied), S is the factor by which the number of elements in
the array has been reduced from the normal case of halfwave spacing.
A question still to be settled is what area does the spiral of
Fig. 2 actually “occupy." For the results to be exhibited, the area
occupied is taken to be & circle whose diameter is half a wavelength
greater than the diameter of the spiral. The diameter of the spiral
is the maxirmum distance, Dma.x’ between a pair of elements on the
spiral. Adding the extra half wavelength reflects a belief that the
sphere of influence of a simple radiator like a dipole extends out-
ward about a quarter wavelength. The spreading factor for the spiral

array is then
2
(D, * .5\)

S =
G

VARIATION OF GAIN WITH THINNING

Figures 3 and L are almost self-explanatory. For a beam steered
from the north pole to the equator along longitude 0° the gain
(normalized by N, the number of elements) is plotted vs @ for values

of the thinning parameter, S = l,..., 8. Figure 3 is for so-called
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isotropic elements (uniform radiation over hemisphere), while Fig. &
is foxj dipoles except that, again, radiation into the southern
hemisphere was assumed zero.

To show how well the cos @ law is followed for the case S = ],
the 3 db limit of the endfire beam has been sketched. Since the
cos 6 rule would predict zero gain at 0 = 900, it obviously cannot
hold over the whole range. The example shows that the rule is closely
followed out to within a beamwidth (endfire) of 90°.

The approximation, cos 8, is shown for the unthinned case

(s 1), and the element factor is shown for the most thinned case

(S = 8). For dipoles along OX, the element gain varies as cos® 0,

which is the element factor plotted in Fig. & for s = 8.

Figure 5 contains the same data as Fig. 3, but plotted against
spacing factor for constant steering angle, 6.

Figure 6 exhibits the variation of gain for a wide range of
spacings when the beam is aimed broadside (8 = 0°). The solid curve
is for isotropic elements while the circles are for infinitesimal
dipoles. Note that at low S the gains are virtually identical , while
as S increases the gains gradually come to differ by about 1.8 db,

corresponding to the gain (3/2) of a dipole.

COMPARISON OF SPREADING AND THINNING

All the results plotted in Figs. 3 through 6 have been for a
fixed number (100) of elements. They therefore show the effects of

spreading a fixed number of elements over a greater and greater area,
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keeping the configuration similar to the original. what if the area
were to be held fixed and a given distribution actually thinned by,
say, halving and quartering the number of elements? The answer to
this question for the spiral example appears in Fig. 7. The three
curves on the left are repeated from Fig. 3. The three curves on
the right also correspond to spacing factors of S=1, 2 and L, but
these factors were produced by reducing the number of elements rather
than by spreading 100 elements over a greater area.

The cases considered fall in the most critical region of spacing--
the transition region between no thinning and great thinning. Never-
theless, the variations of gain with steering for these two kinds of
thinning (increasing the area vs decreasing the number of elements)

are in remarkable accord.

FREEDOM OF ARRAY FACTOR FROM GRATING LOBES

The detailed array factor,

N
A(9,9) = k‘i.‘lexp{(Qni/k)rk[sin 9 cos(cp-cpk) - sin @ cos(epo-ax)]]

for an arrasy of equally excited elements may be written in either of

the universal forms
N
A(U,V) = kzle"P{(z"i/”[("k//_S)U + (/8]
or

N
A(z,¥) = T exp{(21ti/)\)(rk//§)2 cos(‘l’-cpk)}
k=1
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where
U=2cos Y =/5(sin @ cos ¢ - sin 8, cos Qo)

V=2s8inY =/5(sin @ sin @ - sin O sincpo)

The sceling xk/./'ﬁ, v. /5, rk/,/é produces a normalized set of
element locations for which the new spacing is one square halfwave
per element. A universal array factor may be computed in terms of
the pair of varisbles (U,V) or the pair (2,Y). These pairs embody
both steering and spreading variations. If S =1 and the beanm is
aimed broadside (8 = 0), then |z| <1 and -1 €U,V <1 cover all
possible points in real space. If there is to be steering down to
o, = #/2, then the ranges of U,V and 2 must be doubled to account for
all of reel space and for steering as well. Finally, if there is to
be thinning by the factor, S, then the ranges of U,V and Z are
nultiplied by a further /3. For example, if the array of the example
is to be fully steered and if thinning by a factor § = 16 is to be
used, then the ranges of U,V andZare0522=U2+V256hor
0<2Z<8. Several slices (Y = 0°, 30°, 60°, 90°) were plotted for
the array factor of the example and are shown in Figs. 8 and 9. In
addition a coarse survey of the array factor was made by computing
it at a 101 by 201 grid of points in the rectangular interval
0 €U <50, -50 < V<50. The highest value encountered was 10.7 db
down from the main beam. Allowing a factor of 2 for steering, it
appears that this 100-element configuration may be free of grating
lobes even vwhen average interelement spacing 1s 12 wavelengths, though

the survey calculations were not dense enough to guarantee that some
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lobe has not been missed. The survey amounts to taking about one
point for every three or four lobes, the samples being equally spaced
while the lobe spacings are random.

The purpose of this discussion is not to suggest that the par-
ticular example presented is an outstanding array (after all, it has
17 db nearby sidelobes), but rather to illustrate the success of the
spiral layout in avoiding grating lobes when spread or thinned to an
average interelement space of 2\, with full steering. As a comparison,
notice that a 10 by 10 square array with full steering will produce
a grating lobe at A/2 spacing (at endfire it is bi-directional), and
that its first sidelobe is 12 db down. The 17 db first sidelobe of
the example is about what one expects from a uniformly excited

circular area.
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Appendix

I 1k FOR INFINITESIMAL DIPOLES

The element factor for an infinitesimal dipole 1is sineA (in-
tensity), vhere A is the angle between the dipole axis and a vector
to the distant point. If the dipoles are all parallel to the x-axis,

then sineA =] - sinee coseq, and

n x 2xd SInel.. .og( )-r cos( )
. \ O8NP ~¥ yEORI0Ry 2 2
IJk I]sine]de‘[: 1-sin"gcos o)ty
4 :

The first step in evaluating I ik i{s to rewrite the bracket in the

exponent as

x, 08 (o0 ) -x jcos (cp-(pJ ) = d,ycos (cp-‘&dk)

where
2 2 2 2 2
djk = rk + z-J - 2rjrkcos(¢k-<pj) = (xk-xj) + (Yk-YJ)
T, CO: - r Ccosp =
cos vjk - kX S‘{’kd e ,ﬁ(d 4
Jk Jk
T 8% - r,si Yy - Y
B "Shn/ S it # RS S
sin vjk -~ d = d

Jk Jk

ShiTting the ¢ - integral by an amount v sk gives



3

2rd sing
stndeds Fe & LK% 5
n~pde j e cos (qyﬂdk)dcp

-n

)
n
e M E

2 .
Now put 2cos (¢+ka)- 1 + cos2y coseka - sinagsinszk and split one

of the sin3e factors into sing(l-cosee). The result is

x. 21\'1 Sme d

cosgp
sinpdg I e A Jk
-%

dp

-
1
n

O ——ixn

e "

n 2ni Bing o

08¢
(sing-sing cosee)de Ie A Jk dep
-n

]
O —— i1

n 2md sing
sin3ede Ie A

-5

d,, cosp
Jx sq,cos?q;dgp

- coseka

0 In

2xl sing
X ————q COoSp
- sin2y X sin3gde Ie A Jk 51n2pdey
-%

J

O—— NI

The last integral vanishes because the integrand is an odd function

of ¢. The first two integrals simplify a bit > 50 that finally



n

§ .
I, = 2n (J)' sing J(2md,,81n0/2 a0

+ 2x | sing cosae Jo(endjksine/x)de

ot—tlx

X

2 .
+ 2:cos2vJk I sin3e Jé(2nd3ksine/x)
o

Use has been made of the fact that

2

ingz
% I 12959 cos np dp = e = J.(z)
o

The three integrals in IJk are special cases (see Ref. 11, p. 373) of

b.S

2
b
B(a,b,z) = I Ja(zsine)sina+lq cosab+le ds = . r+:+l) Ja+b+l(z)
o z

Particular cases needed are

(z) = sin z _cos 2

2
z z

I3/2
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and
1
a=2, b=- 3
L _r(1/2) +3 rsinz sin z
B(2, - 5;2) = %— J5/2(2) = ZQC—T - cos z) e —
let 2 P 2dek/X ; then
EJ’_‘ i} ein ka . sin ka ) cos ka
2n ka z3 22
Jk Jk

si sin
+c082vdk[z%< lez _coszdk>-'—;5]?5]

Ik Jk

This expression is indeterminate for j = k (and hence z e 0); how-

ever, its limit as ka — o0 is

T =3

This value is also obtained directly from the basic formula:

n
sing de I (l-sinee coseqp)% = %‘
-%

T " 2

O —— NIx
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